Exploring the use of agent-based modeling (ABM) in mixed methods research

  • Henrik Skaug Sætra Østfold University College, Norway
Palabras clave: Modelo Basado en Agentes, métodos mixtos, triangulación, investigación multi-método, métodos de investigación social.


Los modelos basados en agentes (MBA) son, en muchos sentidos, métodos poco utilizados en la investigación social pero, en el presente artículo, se tratará de demostrar que pueden jugar un papel importante en combinación con otros métodos y enfoques. Los MBA pueden ser utilizados en modos que aportan unos beneficios excepcionales a los investigadores de las ciencias sociales si bien, dada la naturaleza abstracta de las diferentes perspectivas que se obtienen, esto requiere el uso de varias metodologías en combinación con los MBA. Los métodos mixtos (MM) son una estrategia de investigación que se ha hecho muy popular y aquí se muestra que, incluso siendo vistos los MBA como un ingrediente natural en las investigaciones en las que se utilizan varios métodos, se dan una serie de peculiaridades, dentro de los mismos MM, que los hacen menos acomodaticios a los MBA de lo que se podría presumir en un primer momento.

Biografía del autor/a

Henrik Skaug Sætra, Østfold University College, Norway
Associate professor at Østfold University College, master degree in 2009 (Political science, University of Oslo). Research interests are centered on the search for robust and minimalist justifications of the state, and the study of writings about Thomas Hobbes and the other classical social contract theorists. Besides classical political theory, interested in environmental ethics, game theory, and agent-based modeling. Currently enrolled in the PhD program at the University of Oslo.


Archer, M. (1998) “Introduction: Realism in the social sciences”. In M. Archer, R. Bhaskar, A. Collier, T. Lawson, and A. Norrie (Eds.), Critical Realism: Essential readings, Chapter 7. London: Routledge.
Axelrod, R. (2003) “Advancing the art of simulation in the social sciences-japanese journal for management information systems”. Special Issue on Agent-Based Modeling, 12 (3).
Axelrod, R. M. (2006a) The complexity of cooperation: Agent-based models of competition and collaboration. New Delhi: New Age International Publishers.
Axelrod, R. M. (2006b) The evolution of cooperation. New York: Basic books.
Bhaskar, R. (1998a) “Facts and values: Theory and practice / reason and the dialectic of human emancipation / depth, rationality and change”. In M. Archer, R. Bhaskar, A. Collier, T. Lawson, and A. Norrie (Eds.), Critical Realism: Essential readings, Chapter 17. London: Routledge.
Bhaskar, R. (1998b) “Societies”. In M. Archer, R. Bhaskar, A. Collier, T. Lawson, and A. Norrie (Eds.), Critical Realism: Essential readings, Chapter 8. London: Routledge.
Bhaskar, R. (2009) Scientific realism and human emancipation. London: Routledge.
Boero, R. and Squazzoni, F. (2005) “Does empirical embeddedness matter? Methodological issues on agent-based models for analytical social science”. Journal of Artificial Societies and Social Simulation, 8 (4).
Bryman, A. (2006) “Integrating quantitative and qualitative research: how is it done?” Qualitative research, 6 (1): 97–113.
Bryman, A. (2007) “Barriers to integrating quantitative and qualitative research”. Journal of mixed methods research, 1 (1): 8–22.
Collier, A. (1998) “Explanation and emancipation”. In M. Archer, R. Bhaskar, A. Collier, T. Lawson, and A. Norrie (Eds.), Critical Realism: Essential readings, Chapter 18. London: Routledge.
Creswell, J. W. (2011) “Controversies in mixed methods research”. The Sage handbook of qualitative research, 4: 269–84.
Creswell, J. W. and V. Plano Clark (2011) “Choosing a mixed methods design”. Designing and conducting mixed methods research, 53–106.
Crookall, D. (2011). “Philosophy and simulation”. Simulation & Gaming, 42 (2), 146–150.
Davidsen, B.-I. (2005) “Arguing critical realism: The case of economics”. Journal of Critical Realism, 4 (2): 291–314.
Davidsen, B.-I. (2010) “Towards a critical realist-inspired economic methodology”. The Journal of Philosophical Economics, 3 (2): 74.
Dean, J. S.; G. J. Gumerman, J. M.; Epstein, R. L.; Axtell, A. C.; Swedlund, M. T. Parker, and S. McCarroll (2000) “Understanding anasazi culture change through agent-based modeling”. Dynamics in human and primate societies: Agent-based modeling of social and spatial processes, 179–205.
Epstein, J. M. and R. Axtell (1996) Growing artificial societies: social science from the bottom up. Washington: Brookings Institution Press.
Gilbert, N. and K. Troitzsch (2005) Simulation for the social scientist. London: McGraw- Hill Education (UK).
Gobo, G. (2008a) Doing ethnography. London: Sage.
Gobo, G. (2008b) “Re-conceptualizing generalization: Old issues in a new frame”. The SAGE handbook of social research methods, 193–213.
Goldstein, J. (1999) “Emergence as a construct: History and issues”. Emergence, 1 (1): 49–72.
Greene, J. C.; Caracelli, V. J. and Graham, W. F. (1989) “Toward a conceptual framework for mixed-method evaluation designs”. Educational evaluation and policy analysis, 11 (3): 255–274.
Halkier, B. (2011). “Methodological practicalities in analytical generalization”. Qualitative Inquiry, 17 (9): 787–797.
Henrickson, L. and McKelvey, B. (2002) “Foundations of “new” social science: Institutional legitimacy from philosophy, complexity science, postmodernism, and agent-based modeling”. Proceedings of the National Academy of Sciences 99 (suppl 3), 7288– 7295.
Heyvaert, M.; Maes, B. and Onghena, P. (2013) “Mixed methods research synthesis: definition, framework, and potential”. Quality & Quantity, 47 (2): 659–676.
Hughes, R. I. G. (1999) “The ising model, computer simulation, and universal physics”. In M. Archer, R. Bhaskar, A. Collier, T. Lawson, and A. Norrie (Eds.), Models as Mediators: Perspectives on Natural and Social Science, Chapter 5. Cambridge: Cambridge University Press.
Johnson, R. B. and Onwuegbuzie, A. J. (2004) “Mixed methods research: A research paradigm whose time has come”. Educational Researcher, 33 (7): 14–26.
Johnson, R. B.; Onwuegbuzie, A. J. and Turner, L. A. (2007) “Toward a definition of mixed methods research”. Journal of mixed methods research, 1 (2): 112–133.
Lawson, T. (1998) “Economic science without experimentation”. In M. Archer; Bhaskar, R.; Collier, A.; Lawson, T. and Norrie, A. (Eds.), Critical Realism: Essential readings, Chapter 6. London: Routledge.
Leech, N. L. and Onwuegbuzie, A. J. (2009) “A typology of mixed methods research designs”. Quality & quantity, 43 (2): 265–275.
Levin, S. A. (1998) “Ecosystems and the biosphere as complex adaptive systems”. Ecosystems, 1 (5): 431–436.
Lieberson, S. (1991) “Small n’s and big conclusions: an examination of the reasoning in comparative studies based on a small number of cases”. Social forces, 70 (2): 307–320.
Maxwell, J. A. and Loomis, D. M. (2003) “Mixed methods design: An alternative approach”. Handbook of mixed methods in social and behavioral research, 1, 241–272.
Miller, K. D. (2014) “Agent-based modeling and organization studies: A critical realist perspective”. Organization Studies, 0170840614556921.
Mingers, J. (2006) “Philosophical foundations: Critical realism”. Realising Systems Thinking: Knowledge and Action in Management Science, 11–31.
Morgan, D. L. (2007) “Paradigms lost and pragmatism regained methodological impli- cations of combining qualitative and quantitative methods”. Journal of mixed methods research, 1 (1): 48–76.
Onwuegbuzie, A. J. and Collins, K. M. (2007) “A typology of mixed methods sampling designs in social science research”. The qualitative report, 12 (2), 281–316.
Outhwaite, W. (1998) “Realism and social science”. In M. Archer, R. Bhaskar, A. Collier, T. Lawson, and A. Norrie (Eds.), Critical Realism: Essential readings, Chapter 10. London: Routledge.
Peirce, C. S. (1998) The essential Peirce: Selected philosophical writings (Vol. 2). Bloomington: Indiana University Press.
Railsback, S. F. and V. Grimm (2011) Agent-based and individual-based modeling: a practical introduction. Princeton: Princeton university press.
Sawyer, R. K. (2004) “The mechanisms of emergence”. Philosophy of the Social Sciences, 34 (2), 260–282.
Sieber, S. D. (1973) “The integration of fieldwork and survey methods”. American journal of sociology, 1335–1359.
Simon, H. A. (1996) The sciences of the artificial. Cambridge: MIT Press.
Symonds, J. E. and S. Gorard (2008) “The death of mixed methods: research labels and their casualties”. In The British Educational Research Association Annual Conference. Heriot Watt University. Edimburgh, 3-6 November, in https://goo.gl/XuZrVZ
Teddlie, C. and A. Tashakkori (2006) “A general typology of research designs featuring mixed methods”. Research in the Schools, 13 (1): 12–28.
Williams, M. (2000) “Interpretivism and generalization”. Sociology, 34 (2): 209-224.
Winsberg, E. (2003) “Simulated experiments: Methodology for a virtual world”. Philosophy of science, 70 (1): 105–125.
Cómo citar
Sætra, H. (2017). Exploring the use of agent-based modeling (ABM) in mixed methods research. Barataria. Revista Castellano-Manchega De Ciencias Sociales, (22), 15-31. https://doi.org/10.20932/barataria.v0i22.337